RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms.

نویسندگان

  • Nivea Farias Luz
  • Sakthi Balaji
  • Kendi Okuda
  • Aline Silva Barreto
  • John Bertin
  • Peter J Gough
  • Ricardo Gazzinelli
  • Roque P Almeida
  • Marcelo T Bozza
  • Valeria M Borges
  • Francis Ka-Ming Chan
چکیده

Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis

Necroptosis as a molecular program, rather than simply incidental cell death, was established by elucidating the roles of receptor interacting protein (RIP) kinases 1 and 3, along with their downstream partner, mixed lineage kinase-like domain protein (MLKL). Previous studies suggested that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein that associates with RIP1/RIP3/M...

متن کامل

Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling

The receptor-interacting protein kinase 3 (RIPK3) plays crucial roles in programmed necrosis and innate inflammatory responses. However, a little is known about the involvement of RIPK3 in NKT cell-mediated immune responses. Here, we demonstrate that RIPK3 plays an essential role in NKT cell function via activation of the mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5). RIPK3-mediat...

متن کامل

Role of Leishmania donovani and its lipophosphoglycan in CD4+ T-cell activation-induced human immunodeficiency virus replication.

Chronic immune activation by coinfecting pathogens has been suggested as a cofactor in human immunodeficiency virus (HIV) disease progression, particularly in the setting of developing countries. Here, we used in vivo-infected mononuclear cells to examine the role of the protozoan parasite Leishmania donovani and its major membrane constituent, lipophosphoglycan (LPG), in mediating CD4+ T-lymph...

متن کامل

Leishmania donovani Infection Causes Distinct Epigenetic DNA Methylation Changes in Host Macrophages

Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a pos...

متن کامل

The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 196 12  شماره 

صفحات  -

تاریخ انتشار 2016